f04 — Simultaneous Linear Equations f04bjc

NAG C Library Function Document

nag real sym packed lin_solve (f04bjc)

1 Purpose

nag real sym packed lin_solve (f04bjc) computes the solution to a real system of linear equations
AX = B, where 4 is an n by n symmetric matrix, stored in packed format and X and B are n by » matrices.
An estimate of the condition number of 4 and an error bound for the computed solution are also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_sym_packed_lin_solve (Nag_OrderType order, Nag_UploType uplo,
Integer n, Integer nrhs, double ap[], Integer ipiv[], double b[], Integer pdb,
double *rcond, double *errbnd, NagError *fail)

3 Description

The diagonal pivoting method is used to factor 4 as 4 = UDU", if uplo = Nag_Upper, or 4 = LDL", if
uplo = Nag_Lower, where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored
form of A4 is then used to solve the system of equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag ColMajor.

2: uplo — Nag_UploType Input
On entry: if uplo = Nag_Upper, the upper triangle of the matrix 4 is stored.
If uplo = Nag_Lower, the lower triangle of the matrix 4 is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: the number of linear equations 7, i.e., the order of the matrix A.

Constraint: n > 0.

[NP3660/8] f0dbje. 1

f04bjc NAG C Library Manual

4: nrhs — Integer Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs > 0.

5: ap[dim] — double Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+ 1)/2).

On entry: the n by n symmetric matrix 4, packed column-wise in a linear array. The jth column of
the matrix 4 is stored in the array ap as follows:

if uplo = Nag_Upper, ap[i + (j — 1)j/2] = a; for 1 <i <
if uplo = Nag_Lower, ap[i+ (j — 1)(2n —) /2] = a; for j <i<n
See Section 8 below for further details.

On exit. if fail.code = NE_NOERROR, NE_SINGULAR or NE_RCOND, the block diagonal
matrix D and the multipliers used to obtain the factor U or L from the factorization 4 = UDU Tor
A =LDL" as computed by nag_dsptrf (f07pdc), stored as a packed triangular matrix in the same

storage format as 4.
6: ipiv[dim| — Integer Output
Note: the dimension, dim, of the array ipiv must be at least max(1l,n).

On exit: if fail.code = NE_NOERROR, NE SINGULAR or NE RCOND, details of the
interchanges and the block structure of D, as determined by nag dsptrf (f07pdc).

If ipiv[k — 1] > 0, then rows and columns & and ipiv[k — 1] were interchanged, and dy, is a 1
by 1 diagonal block;

if uplo = Nag_Upper and ipiv[k — 1] = ipiv[k — 2] < 0, then rows and columns k£ — 1 and
—ipiv[k — 1] were interchanged and dj_; 4, is a 2 by 2 diagonal block;

if uplo = Nag_Lower and ipiv[k — 1] = ipiv[k] < 0, then rows and columns k + 1 and
—ipiv[k — 1] were interchanged and dj.;. 44+1 is @ 2 by 2 diagonal block.

7: b[dim] — double Input/Output

Note: the dimension, dim, of the array b must be at least

max(1,pdb x nrhs) when order = Nag_ColMajor;
max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,j)th element of the matrix B is stored in b[(j — 1) x pdb +i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix B is stored in b[(i — 1) x pdb +j — 1].
On entry: the n by r matrix of right-hand sides B.

On exit: if fail.code = NE_NOERROR or NE_RCOND, the n by » solution matrix X.

8: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

9: rcond — double * Output
On exit: if fail.code = NE_NOERROR, NE_SINGULAR or NE_RCOND, an estimate of the

reciprocal of the condition number of the matrix 4, computed as rcond = 1/ (||A||1 Hz‘f1 ||1)

f04bjc.2 [NP3660/8]

f04 — Simultaneous Linear Equations f04bjc

10: errbnd — double * Output

On exit: if fail.code = NE_NOERROR or NE_RCOND, an estimate of the forward error bound
for a computed solution X, such that ||x — x||,/||x||; < errbnd, where % is a column of the computed
solution returned in the array b and x is the corresponding column of the exact solution X. If rcond
is less than machine precision, then errbnd is returned as unity.

11: fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2
On entry, pdb = (value), n = (value).Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix 4 is
numerically singular.

NE_SINGULAR

Diagonal block (value) of the block diagonal matrix is zero. The factorization has been completed,
but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, X, satisfies an equation of the form
(A+E)x=0b,
where
€[, = O(e) |4l

and ¢ is the machine precision. An approximate error bound for the computed solution is given by

[NP3660/8] f04bjc.3

f04bjc

1% = Il

1l

K(4)

1],
141,

NAG C Library Manual

where k(4) = HAi1 H [[4]];, the condition number of 4 with respect to the solution of the linear equations.

nag_real_sym_packed_lin_solve (f04bjc) uses the approximation ||E||, = €||4||, to estimate errbnd. See
Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The packed storage scheme is illustrated by the following example when n = 4 and uplo = Nag Upper.
Two-dimensional storage of the symmetric matrix 4:

apy dpp apz Ay
dyy dpz A4 _
(a5 = a;)
aszy dsy
Qg4
Packed storage of the upper triangle of A4:
ap = [ay, ap, an, a3, Gy, a3, A, s (34, Gag)

The total number of floating-point operations required to solve the equations AX = B is proportional to
(%n3 + 2n2r). The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogues of nag real sym packed lin solve (f04bjc) are nag herm packed lin solve
(f04cjc) for complex Hermitian matrices, and nag_complex sym packed lin solve (f04djc) for complex
symmetric matrices.

9 Example
To solve the equations
AX =B,
where A is the symmetric indefinite matrix
—1.81 2.06 0.63 -—1.15 0.96 3.93
4 2.06 1.15 1.87 420 and B — 6.07 19.25
o 0.63 1.87 —-0.21 3.87 | 838 9.90
—1.15 420 3.87 2.07 9.50 27.85

An estimate of the condition number of 4 and an approximate error bound for the computed solutions are
also printed.

9.1 Program Text

nag_real_sym _packed_lin_solve (f04bjc) Example Program.

* Copyright 2004 Numerical Algorithms Group.

* Mark 8,
*/

2004.

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nagf04.h>
<nagx04.h>

#include
#include
#include
#include
#include

int main(void)

f04bjc.4 [NP3660/8]

f04 — Simultaneous Linear Equations f04bjc

/* Scalars */
double errbnd, rcond;
Integer exit_status, i, Jj, n, nrhs, pdb;

/* Arrays */

char uplo[2];
double *ap=0, *b=0;
Integer xipiv=0;

/* Nag types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo_enum;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl[(2*n-J)=*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) apl[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + T - 1]

order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

Vprintf ("nag_real_sym_packed_lin_ solve (f04bjc) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("$1d%1d%*["\n] ", &n, &nrhs);
if (n>0 && nrhs>0)
{
/* Allocate memory */
if (!(ap = NAG_ALLOC(n*(n+1)/2, double)) ||
! (b = NAG_ALLOC(n*nrhs, double)) ||
! (ipiv = NAG_ALLOC(n, Integer)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
b
#ifdef NAG_COLUMN_MAJOR
pdb = n;
#else
pdb = nrhs;
#endif
}
else
{
Vprintf ("ss\n", "n and/or nrhs too small");
exit_status = 1;
return exit_status;

}

Vscanf (" 7 %1s ’'%*[*\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;

[NP3660/8] f04bjc.5

f04bjc NAG C Library Manual

goto END;
¥

/* Read the upper or lower triangular part of the matrix A from *x/
/* data file =*/

if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++1i)
{
for (j = i; j <= n; ++j)
{
Vscanf ("$1f", &A_UPPER(i,j));
}
¥
Vscanf (“\nl ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
{
Vscanf ("$1f", &A_LOWER(i,j));
}
b
Vscanf ([*\n] ");
}

/* Read B from data file */

for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
{
Vscanf ("s1f", &B(i,j));
3
}
Vscanf ([*\n] ");

/* Solve the equations AX = B for X */
/* nag_real_sym_packed_lin_solve (f04bjc).
* Computes the solution and error-bound to a real symmetric
* system of linear equations, packed storage
*
/
nag_real_sym_packed_lin_solve(order, uplo_enum, n, nrhs, ap, ipiv, b, pdb,
&rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR)
{

/* Print solution, estimate of condition number and approximate =*/
/* error bound */

/* nag_gen_real_mat_print (xO4cac).

* Print real general matrix (easy-to-use)

*/
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real mat_print (x0O4cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;
¥
Vprintf ("\n")
Vprintf("%s\no6so9 le\n", "Estimate of condition number", "", 1.0/rcond);
Vprintf ("\n\n")
Vprintf("°s\no6so9 le\n\n",

f04bjc.6 [NP3660/8]

f04 — Simultaneous Linear Equations f04bjc

"Estimate of error bound for computed solutions", "", errbnd);
}
else if (fail.code == NE_RCOND)
{

/* Matrix A is numerically singular. Print estimate of */
/* reciprocal of condition number and solution =*/

Vprintf ("\n") ;
Vprintf ("%$s\n%6s%9.le\n\n", "Estimate of reciprocal of condition number",
"', rcond);
Vprintf ("\n") ;
/* nag_gen_real _mat_print (x04cac), see above. */
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real_mat_print (xO04cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;
b
}
else if (fail.code == NE_SINGULAR)
{

/* The upper triangular matrix U is exactly singular. Print */
/* details of factorization */

Vprintf ("\n") ;
/* nag_pack_real_mat_print (x04ccc).
* Print real packed triangular matrix (easy-to-use)
*
/
nag_pack_real _mat_print(order, Nag_Upper, Nag_NonUnitDiag, n, ap,
"Details of factorization", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_pack_real_mat_print (xO4ccc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

/* Print pivot indices */
Vprintf ("\n") ;
Vprintf ("%s\n%3s", "Pivot indices", "");

for (1 1; 1 <= n; ++1i)
{
Vprintf("%$111d%s", ipiv([i - 1], i%7 == 0 || 1 == n 2?2"\n":" ");
¥
Vprintf ("\n") ;

3
END:

if (ap) NAG_FREE (ap);
if (b) NAG_FREE (D) ;
if (ipiv) NAG_FREE (ipiv) ;

return exit_status;

}

#undef B

[NP3660/8] f04bjc.7

f04bjc

9.2 Program Data

nag_real_sym packed_lin_solve (f04bjc) Example Program Data

4 2 :Values of N and NRHS
g’ :Value of UPLO
-1.81 2.06 0.63 -1.15
1.15 1.87 4.20
-0.21 3.87
2.07 :End of matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 :End of matrix B

9.3 Program Results

nag_real_sym packed_lin_solve (f04bjc) Example Program Results

Solution

1 2
1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Estimate of condition number
7.6e+01

Estimate of error bound for computed solutions
8.4e-15

NAG C Library Manual

f04bjc.8 (last)

[NP3660/8]

	f04bjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	uplo
	n
	nrhs
	ap
	ipiv
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_RCOND
	NE_SINGULAR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

